Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature

نویسندگان

  • Franziska Eller
  • Carla Lambertini
  • Mette W Nielsen
  • Simona Radutoiu
  • Hans Brix
چکیده

It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na(+)/H(+) antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR

The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...

متن کامل

Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions

Basmati rice (Oryza sativa L.) cultivars viz. PRH-10 (pusa rice hybrid-10) and PS-2 (Pusa Sugandh-2) were grown under two different day/night temperatures (31/24°C, 35/28°C) at ambient (370 μmol/mol) and elevated (550 μmol/ mol) carbon dioxide (CO2) concentration, respectively, to characterize how an increase in CO2 and temperature affects rice photosynthesis and carbohydrate metabolism. At ele...

متن کامل

Cloning and Expression Analysis cf Two Photosynthetic Genes, PSI-H and LHCB1, Under Trehalose Feeding Conditions in Arabidipsis Seedlings

Trehalose (a-D-glucosyl-[1,1]-a-D-glucopyranoside) is involved in mechanisms that coordinate metabolism with plant growth adaptation and development. The main objective of the current work was to find out whether trehalose feeding affects the expression of two genes involved in photosynthesis: one gene coding for photosystem1 subunit H (PS1-H) and the other for the light harvesting complex B1 (...

متن کامل

تاثیرسلنیم فلزی و نانو بر خصوصیات فیزیولوژیک گیاه گوجه فرنگی

Selenium (Se) is an important microelement for plants and has been shown to improve growth under normal and stressed conditions. In this study, effect of Se and nano-selenium (N-Se) on hydroponically-grown tomato (Lycopersicum esculentum Mill. cv. ‘Halil’) on photosynthesis, antioxidant activity and total polyphenolic content was assessed. A factorial experiment with three temperatu...

متن کامل

The Study of SOS Genes Expression in Mutant Barley Root under Salt Stress

Soil salinity is one of the most critical factors reducing crop yield. SOS signaling is one of the significant pathways that regulate ion homeostasis and it has the important role in mechanism of plant resistance to environmental stresses such as salt stress. Roots are the first organ of plants exposed to salt, so the role of genes involved in this pathway and their relation to salt tolerance w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014